Table Of Contents

Introduction... 3
Product Description ... 3
 Servo System.. 4
 Joystick Controller .. 5
Operation .. 5
 Start-Up.. 5
 Time Constant... 5
 Pointing Angle.. 6
 Inertial Mode... 6
 Position Mode... 7
 Error Correction... 7
 Centrifugal Force: ... 7
 Delta Velocity (Acceleration): ... 7
Safety Features.. 7
 Over-current detection: .. 7
 Electronic limit stop: ... 8
 Mechanical limit stop: .. 8
 Reverse power connection: .. 8
Installation .. 8
 Mounting: ... 8
 Servo System: .. 8
 User Payload: .. 10
Environment: .. 11
 Connections: .. 11
 Power: .. 11
Specifications ... 12
RS-232 Output Format ... 13
Joystick Controller ... 14
 Joystick ... 14
 Power Button ... 14
 Position Mode Button .. 14
 Home Button ... 15
 Rate Bias Button .. 15
 Joystick Controller Pinout .. 15
 Servo System Pinout ... 16
RS-232 Input Commands ... 16
Warning .. 17
Appendix A ... 19
Appendix B ... 22
 Activating Command Mode (Double Spacebar Mode)...................................... 22
 Determining Output Channels ... 22
 Setting Output Channels .. 23
 Adjust Time Constant ... 23
 Set Joystick Tilt Axis Parameters ... 24
 Set Joystick Pan Axis Parameters ... 25
 Set New Home Position ... 26
 Set Baud Rate .. 27

Watson Industries prides itself on solving customer problems and serving their needs in a timely fashion. This manual is intended to facilitate this goal and to provide written information about your product. We ask that you carefully read this manual. Becoming familiar with the manual will help you understand the product’s capabilities and limitations, as well as provide you with a basic understanding of its operation. If, after reading the manual, you require further assistance, do not hesitate to call Watson Industries with your questions and comments.
CAUTION!

Watson Sensors are rugged devices that have been used successfully in a number of harsh environments. The components have been qualified to withstand a mechanical shock of 200g’s or greater, and most enclosures provide an added level of protection. However, dropping a sensor from waist height onto a hard floor can cause a shock level of 600g’s. At this level, damage is likely to occur.

Introduction

This manual is intended to help in understanding the installation and operation requirements of the Watson Stabilized Pan & Tilt Platform System. This platform employs gyros to stabilize the platform to allow devices to be accurately positioned on target irrespective of the motion of the vehicle on which it is mounted. Details of the operation and adjustments are provided to allow the owner to obtain optimum performance from this product.

Watson Industries has many years of experience developing stabilized platform sensor packages for camera and antenna applications. Now we have taken the next step and are offering a complete system.

Watson Industries also provides custom systems for special requirements. Our system design is modular and configurable for economical and quick adaptation to a wide variety of hardware configurations. Watson Industries’ excellent product support and applications engineering goes along with every product.

Product Description

Watson Industries SPS-P230 Stabilized Pan & Tilt Platform System consists of two components. The first component is the Servo System and the second component is the Joystick Controller. These components are connected together by a 5-meter Interface Cable.
Servo System

The Servo System is built around a rugged pan and tilt mechanism. This is a high-resolution digital system that uses high quality, wide bandwidth, low noise, and solid-state gyros. The whole system is user configurable to adapt to a wide range of payloads and requirements.

![Figure 1 Two-axis gyro Stabilized Platform installation](image)

Each axis uses a servomotor, which drives the platform through an anti-backlash gear, a precision potentiometer for positional measurements, and a pair of limit stops. The anti-backlash gear minimizes the backlash from platform motions to less than 10 Arc Seconds. Furthermore, Watson Industries has installed two gyros and a triaxial accelerometer that are used to calculate corrective commands to the drive motors.

The two gyros are rugged vibrating-structure gyroscopes, whose angular rate signals are converted from analog to 16-bit digital form. The effects of temperature variation on the DC bias of the gyros are digitally corrected.

The micro controller assesses the desired motion of the platform based on joystick commands received through the RS-422 serial link from the Joystick Controller. It then compares this desired motion against the real motion of the platform, sensed by the gyros and accelerometers, developing a rate error value. A servo-control system uses the angular rate and integral of the angular rate to
derive a motor voltage that drives the error to zero. In other words, the servo-control system ensures that the motion of the platform matches that of the joystick commands.

The servo driver module in the mount enclosure accepts commands from the micro controller in digital form, converts them to pulse-width modulation using two full-bridge switching motor drivers and then applies the modulated signal to the two motors.

The platform is carefully designed to be rugged and reliable. Particular attention has been paid to minimizing the effects of noise at every point in the system. This ensures that full advantage can be taken of the low noise performance of the gyroscopes a highly stable platform.

Joystick Controller
The Joystick Controller has a joystick, four buttons, four led indicator lights and three connectors. The joystick controls the positioning of the SPS-P230 payload. The joystick itself is used to pan and tilt the payload. The indicator lights and buttons that are used to inform the operator or to control the operation of the SPS-P230 in different ways.

Operation

Start-Up
The system is automatic. Once power is applied, the stabilized platform system will drive to its preset home position with any errors corrected by using a short time constant. The time constant of the corrections is increased in increments until it reaches the full operational time constant. The initialization mode has a 10 second duration. Please allow a 30 second warm-up before operating the unit.

Time Constant
The operational time constant of error correction is chosen for the predicted influences on the accuracy of the system. Chief among the sources of error are the dynamics of the vehicle and the drift tendencies of the gyroscopes.

Vehicle dynamics are characterized as being violent when they exist for a short time and gentle when they are sustained over a long period. They are derivative in nature. In contrast, gyroscopes have little error in the short term, but these errors grow rapidly as they accumulate in the system. They are integral in nature. The time constant must be chosen to match the circumstances such that the least error is likely as shown in example the below:
The correction time constant for this system is adjustable based on the conditions detected by the system. When increasing errors are detected, the time constant is made longer so that the gyros are in more control of the angles. This is done on the assumption that short-term errors are more likely to be caused by vehicle dynamics.

The dynamics of aircraft, ships, or land vehicles all have individual patterns and intensities. Sometimes, only experience will expose the best time constant setting for the lowest error. This is why the time constants are settable by the user through the RS-232 connection of the Joystick Controller. Please consult with Watson Industries before altering the time constants of the unit.

Pointing Angle

In initialization, the unit will drive to a preset “Home” pointing angle based on the potentiometer reading for each axis. After initialization, the unit can be commanded to return to this pointing angle by pressing the Home Button on the Joystick Controller. The stable platform will hold this angle until any joystick motion is detected. Full ranges of offsets to this starting point (within mechanical limits) are settable by the user through a RS-232 connection of the Joystick Controller (See Appendix B - Set New Home Position Section).

Inertial Mode

In this mode, the unit will stabilize both the pan and tilt axis of the platform. In ‘I’ mode, the pan and tilt axis will compensate so that the platform can stay pointed at a specific location regardless of the motions of the vehicle on which it is mounted. Any joystick commands to move the platform are relative to its stabilized position. Inertial mode is the default mode at startup for the platform. When the platform is operating in inertial mode, the LED on the position mode button will not be illuminated. The user can toggle between Inertial Mode and Position mode by pressing the Position Mode button on the Joystick Controller.
Position Mode

Position or “P” mode is a relative positioning mode. It uses the rate gyros to detect motion on the pan axis and hold the platform in the last commanded position relative to the vehicle. The tilt axis operates differently. In Position mode, as well as Inertial Mode, the tilt axis stays stabilized and will maintain an inertial position irrespective of vehicle motions. Position Mode is activated by pressing the Position Mode button on the Joystick Controller. When the platform is operating in position mode, the LED on the position mode button will be illuminated.

Error Correction

Short-term disturbances will not affect the stable mount system, but as these errors become longer term, joystick commands will become necessary to correct them. Two common sources of long-term errors for the “P” mode are discussed below.

- **Centrifugal Force:**
 The centrifugal force from turns at a significant speed could pull the pointing angle into error over time, depending on the pointing angle. If this is a problem, setting the system time constant to a higher time interval may help.

- **Delta Velocity (Acceleration):**
 The compensation for forward acceleration is the same as the centrifugal force compensation.

Safety Features

- **Over-current detection:**
 There is current sensing for each axis of this system that is connected to the micro controller. If sustained excessive motor current is detected (i.e. greater than one amp on either axis), the system will reduce the drive circuit gain by a factor of 4 to reduce the drive current. The gain will be held low for 2 seconds after the current is below the limit. Since the components of the system are balanced, the only regular cause of sustained over current is driving against resistance such as an obstruction. Such a load on the system could cause the motor to burn out and this must be...
prevented. If an obstruction causes an over current state, the obstruction should be identified and removed. If an overcurrent state is detected, the overcurrent LED on the Joystick Controller will be illuminated.

Electronic limit stop:
The system tracks the orientation of the mount by reading the potentiometer outputs and will prevent driving past a preset angle value held in the micro controller’s non-volatile memory. Driving the mount away from this limit is not inhibited.

Mechanical limit stop:
This is a mechanical limit adjusted to keep the mount from colliding with its structure. It uses micro switches to turn off the ability to drive further into the stop by interrupting one side of the motor driver. This is a last line of defense from a system failure, as it is fully independent from the other safety systems. Driving the mount away from this limit is not inhibited.

Reverse power connection:
Power is diode protected from voltage polarity reversal. Recovery is immediate and without damage.

Installation
The servo system is mounted with careful alignment and bolted together. Additionally, the payload (supplied separately) must be attached to the SPS. The steps for this process are described below and should be read and understood before any installation or assembly begins.

WARNING – Do not apply power until the installation is complete!

Mounting:

Servo System:
The servo system is the part of the SPS that will stabilize the payload. The servo system consists of the main servo housing and the payload-mounting arm. The main servo housing has a circular plate with four M6 threaded holes and four #12 or M6 clearance holes for mounting. Several steps should be followed for a proper installation of the servo system:

1. The servo system is heavy and must be supported during installation to its mounting place.
2. Adjust the position of the mounting ring of the servo system so that the paint mark on the mounting ring will line up in line with the center position of the intended field of view. The stop pin on the servo system also needs to be aligned fore of the center position of intended field of view.
3. Loosely attach the servo system to the mounting position using four mounting bolts, washers and possibly nuts. Use bolts that do not protrude beyond the mounting ring.

4. Once the servo system is aligned, secure the four mounting bolts.

User Payload:

Once the servo system is correctly installed, a payload may be installed on the arm of the servo system. The SPS has no counterweight and is limited by this load imbalance to a 99 lb (45 Kg) payload. **WARNING – Do not apply power until the installation is complete!**
Environment:

This product has been surface treated for resistance to salt air and precipitation. This resistance is limited however, and the system should be kept clean and should be inspected for signs of corrosion damage regularly.

As in all moving mechanisms there is concern about ice interfering with operation. The system has internal protection against damage from stalling the motors, but performance may be reduced.

The system should be considered fragile:

DO NOT APPLY LOADS OR FORCES TO THE PAYLOAD.

Connections:

This product has two components. The Servo System and the Joystick Controller Box. First connect the Servo System and Joystick Controller box together using the 5 meter Interface Cable. The 7 pin connector end of the Interface Cable is attached to the Joystick Controller box and the 8 pin connector end is connected to the Servo System. Make sure the power switch is in the off position (up – non depressed position). Now the power connection is attached to the Joystick Controller Box. The mating connector is included. Be sure to use the proper gauge wire for this connection as the unit can draw up to 6 Amps of current @ 28 VDC. See Joystick Controller Pinout Section.

The Power Switch on the Joystick Controller Box switches on power to the entire system.

Power:

This unit has an internal regulator to allow operation over a moderate voltage input range. Best operation is obtained at 28 VDC level, although operation is fully satisfactory down to 18 VDC and up to 30 VDC. The peak current is about 6 amperes. Internal capacitors are provided to remove a reasonable level of power line noise, however, capacitors should be added for long power line wiring or if noise is induced from other loads on the circuit.
Specifications

Platform

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range: Pan</th>
<th>±170° (Electronic)</th>
<th>±175° (Mechanical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range: Pan</td>
<td>±90° (Electronic)</td>
<td>±95° (Mechanical)</td>
<td></td>
</tr>
<tr>
<td>Slew Rate: Bank, Elevation</td>
<td>±45°/sec</td>
<td>±3.0°</td>
<td></td>
</tr>
<tr>
<td>Tilt Accuracy: Static</td>
<td>±1.5°</td>
<td>±3.0°</td>
<td></td>
</tr>
<tr>
<td>Noise:</td>
<td>0.1° rms</td>
<td>1.0° rms</td>
<td></td>
</tr>
<tr>
<td>Stability:</td>
<td>±1.5°</td>
<td>Over 20 minutes</td>
<td></td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Temperature: Operating</th>
<th>-20°C to +50°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature: Storage</td>
<td>-50°C to +80°C</td>
<td></td>
</tr>
<tr>
<td>Vibration: Operating</td>
<td>0.5 g rms</td>
<td>100 Hz to 1 KHz</td>
</tr>
<tr>
<td>Vibration: Survival</td>
<td>2 g rms</td>
<td>100 Hz to 1 KHz</td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Startup Time: Operational</th>
<th>10 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Time: Full Performance</td>
<td>90 seconds</td>
<td></td>
</tr>
<tr>
<td>Input Power:</td>
<td>18 to 30 VDC</td>
<td></td>
</tr>
<tr>
<td>Input Current:</td>
<td>2A @ 28VDC</td>
<td>6A Peak</td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Size: Including Mounting Flanges</th>
<th>6.7"W x 15.8"L x 9.2"H</th>
<th>17.0 x 40.1 x 23.4 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight:</td>
<td>28lb (12.7Kg)</td>
<td>Not including payload</td>
<td></td>
</tr>
<tr>
<td>Connection: RS-232</td>
<td>9 pin female "D" subminiature</td>
<td>On joystick controller</td>
<td></td>
</tr>
<tr>
<td>Connection: Power</td>
<td>MS3112E-8-4P (4 pin male)</td>
<td>On joystick controller</td>
<td></td>
</tr>
<tr>
<td>Connection: Interface</td>
<td>MS3102A-16S-1S (7 pin female)</td>
<td>On joystick controller</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS3102A-20-7P (8 pin male)</td>
<td>On servo controller</td>
<td></td>
</tr>
<tr>
<td>Interface Cable:</td>
<td>MS3106A-16S-1P 7 pin male end</td>
<td>MS3106A-20-7S 8 pin female end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mates to joystick controller</td>
<td>mates to servo system</td>
<td></td>
</tr>
<tr>
<td>Capacity:</td>
<td>45 Kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Mounting Holes:</td>
<td>Qty 8 (4 x M6 threaded; 4 x #12 M6 clearance)</td>
<td>4" dia. bolt circle</td>
<td></td>
</tr>
<tr>
<td>Payload Mounting Holes:</td>
<td>Qty 8 #12 (M6 clearance)</td>
<td>4" dia. bolt circle</td>
<td></td>
</tr>
</tbody>
</table>

- Specifications are subject to change without notice.
- This product may be subject to export restrictions. Export Classification ECCN EAR99.
RS-232 Output Format

The nominal RS-232 output consists of a string of decimal ASCII characters sent asynchronously at regular intervals at about 10 strings per second. The string is set to be sent at 9600 baud with eight data bits, one stop bit, no parity, and no handshaking. The factory settings for the contents of the string is formed as follows:

1. A six character string representing the tilt angle starting with a space, then a “+” or a “-“, followed by two digits, a decimal point, and one digit for up to ±89.9 degrees.

2. A six character string representing the pan angle starting with a space, then a “+” or a “-“, followed by three digits, a decimal point, and one digit for up to ±179.9 degrees.

3. A six character string representing the tilt axis angular rate starting with a space, then a “+” or a “-“, followed by two digits, a decimal point and one digit for up to ±99.9 degrees/second.

4. A six character string representing the pan axis angular rate starting with a space, then a “+” or a “-“, followed by two digits, a decimal point and one digit for up to ±99.9 degrees/second.

5. A five character string representing the power supply voltage starting with a space, followed by two digits, a decimal point, and one digit for up to 35.0 VDC.

6. A six character string representing the tilt axis motor current starting with a space, then a “+” or a “-“, followed by one digit, a decimal point and two digits for up to ±9.99 Amps.

7. A six character string representing the pan axis motor current starting with a space, then a “+” or a “-“, followed by one digit, a decimal point and two digits for up to ±9.99 Amp.

8. A four character string representing the Status Bits starting with a space, followed by three ASCII characters representing Octal digits.

9. A seven character string representing the Flag Bits starting with a space, followed by two ASCII characters (Flag Bits1) representing Octal digits, a space, followed by three ASCII characters (Flag Bits2) representing Octal digits.

10. The string is terminated by a carriage return. There will then be a short interval with no data transmission before the next string begins.

Example:

```
+02.5 -001.5 +02.5 -05.0 24.5 +0.25 -0.22 064 04 000 <CR>
```

```
space space space space space space space space
```

Watson Industries, Inc.
The output message and baud rate can be configured by the user. See Appendix B for more information.

A text header is sent by the SPS during initialization that identifies the unit by part number and serial number and gives the date of last calibration. Additionally, a line of text characters that identifies the data channel columns is sent if the serial output is set to ASCII decimal. This header message can be suppressed or restored by sending a “*” command from the interfacing computer. This change can also be made the default by sending a quote (“”) command.

Data transmission sent by the SPS-P230 can also be suppressed or restored by sending a “+” command from the interfacing computer. This change can be made the default setting by sending a quote (“”) command.

Joystick Controller

The Joystick Controller has a joystick, four buttons, four led indicator lights and three connectors. These items are explained below.

Joystick

The joystick positions the SPS-P230 payload. A left or right movement of the joystick controls the pan motion of the payload while an up or down movement controls the tilt. The joystick is also used to correct any rate bias in the system, which is discussed later. When the joystick is commanding the SPS-P230 to move in the pan axis, the green pan indicator light will be illuminated. Similarly, when the system is moving in the tilt axis, the green tilt indicator light will be illuminated.

Power Button

The power button turns the SPS-P230 on and off. When the system is powered on, the power indicator light will be illuminated.

Position Mode Button

This button toggles the sensor between position mode and inertial modes of operation. When the platform is operating in position mode, the LED on the position mode button will be illuminated. For more information on these to modes, see the Pointing Angle section earlier in this manual.
Home Button
Pressing the home button will command the SPS-P230 to return the payload to a predetermined Home position. The platform will stay at this position regardless of vehicle motion. Any joystick input will exit the home position. The home position is set through the SPS-P230 menu system. See Appendix B for more information.

Note: When the SPS-P230 is first powered on, it will go to the home position.

Rate Bias Button
The rate bias button allows the user to eliminate any rate bias motion from the platform using joystick inputs. Pressing this button toggles the sensor between normal operation and a special rate bias adjustment mode. When the SPS-P230 is in rate bias adjustment mode, the LED on the rate bias button will be illuminated. When in this mode, joystick motions are added to the system as bias adjustments. Moving the joystick in the pan axis will adjust pan rate bias, while joystick tilt motions will adjust tilt rate bias.

Joystick Controller Pinout
The joystick controller has three connectors mounted to the rear panel as shown below:

<table>
<thead>
<tr>
<th>9 Pin Female D-Sub</th>
<th>MS3102A-16-1S</th>
<th>MS3112E-8-4P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232 Interface</td>
<td>Interface to Platform</td>
<td>Power</td>
</tr>
<tr>
<td>Pin</td>
<td>Description</td>
<td>Pin Description</td>
</tr>
<tr>
<td>1</td>
<td>N.C.</td>
<td>A Power Ground</td>
</tr>
<tr>
<td>2</td>
<td>RS-232 TXD</td>
<td>B +28VDC Power</td>
</tr>
<tr>
<td>3</td>
<td>RS-232 RXD</td>
<td>C RS-422 RX+</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
<td>D RS-422 RX-</td>
</tr>
<tr>
<td>5</td>
<td>Signal Ground</td>
<td>E Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
<td>F RS-422 TX-</td>
</tr>
<tr>
<td>7</td>
<td>N.C.</td>
<td>G RS-422 TX+</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>N.C.</td>
<td></td>
</tr>
</tbody>
</table>
Servo System Pinout

The Servo System has one connector:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power Return</td>
</tr>
<tr>
<td>B</td>
<td>+28 Volt Power</td>
</tr>
<tr>
<td>C</td>
<td>RS-422 TX+</td>
</tr>
<tr>
<td>D</td>
<td>RS-422 TX-</td>
</tr>
<tr>
<td>E</td>
<td>Signal Ground (connected internally to Power Return)</td>
</tr>
<tr>
<td>F</td>
<td>RS-422 RX-</td>
</tr>
<tr>
<td>G</td>
<td>RS-422 RX+</td>
</tr>
<tr>
<td>H</td>
<td>Case Ground</td>
</tr>
</tbody>
</table>

RS-232 Input Commands

The RS-232 input commands are provided for the purpose of unit test and installation set-up. These input commands use the same communication parameters that the output data uses (9600 baud ASCII nominal, or as reset in the units EEPROM). There are some commands intended for the user while others are used at the factory for alignment and calibration.

An exclamation point “!” will reinitialize the unit just as re-powering the unit would. Furthermore, the access to initialization is inhibited such that a spacebar command must be sent within 2.5 seconds of the “!” command for initialization to be engaged.

There are several interface commands: “:” will toggle the output to send a frame of data upon receiving any non-command character and “+” will toggle the output for no output data. These and other changes are made non-volatile (default) in the unit on EEPROM by keying in the quote (“”) character. Double spacebar at initialization is required for access to these commands.

Note that the “:” setting will cause the mechanical brake to be engaged between frames. This is not intended to be an operational mode.

The “&” command calls a menu which allows any of several parameters to be set. These are the system time constant, joystick/axis parameters, selection of data channels for serial output, listing current serial channels and baud rate. Double spacebar at initialization is required for access to this command. See Appendix B for more information.

The commands “~”, “@”, “#”, “$”, “(”, “)”, “{”, “}”, “|”, “<”, “>” and “?” are used by the Watson factory to calibrate the unit and should be used only with the assistance of the factory. If an undesired function is called, a “Q”, and sometimes the Escape or Delete key will interrupt the command and return to operation with the least disturbance to the system. All other unspecified characters such as carriage return, line feed and space are ignored by the system.
Warning

Rough handling or dropping of this unit is likely to cause damage. Over-voltage and/or miswiring of this unit will cause damage. This unit should be inspected regularly when exposed to prolonged exposure to high humidity and/or salt air environments.

DISCLAIMER

The information contained in this manual is believed to be accurate and reliable; however, it is the user’s responsibility to test and to determine whether a Watson Industries’ product is suitable for a particular use. Suggestion of uses should not be taken as inducements to infringe upon any patents. This product is not to be used as a primary instrument for life critical use.

WARRANTY

Watson Industries, Inc. warrants, to the original purchaser, this product to be free from defective material or workmanship for a period of two full years from the date of purchase. Watson Industries’ liability under this warranty is limited to repairing or replacing, at Watson Industries’ sole discretion, the defective product when returned to the factory, shipping charges prepaid, within two full years from the date of purchase. All sensors returned under warranty will be repaired (or replaced at the sole option of Watson Industries) at no cost to the customer other than shipping charge from customer to Watson Industries (plus any export and transportation charges outside the United States). The warranty described in this paragraph shall be in lieu of any other warranty, express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.

Excluded from any warranty given by Watson Industries are products that have been subject to abuse, misuse, damage or accident; that have been connected, installed or adjusted contrary to the instructions furnished by seller; or that have been repaired by persons not authorized by Watson Industries.

Watson Industries reserves the right to discontinue models, to change specifications, price or design of this product at any time without notice and without incurring any obligation whatsoever.

The purchaser agrees to assume all liabilities for any damages and/or bodily injury, which may result from the use, or misuse, of this product by the purchaser, his employees or agents. The purchaser further agrees that seller shall not be liable in any way for consequential damages resulting from the use of this product.

No agent or representative of Watson Industries is authorized to assume, and Watson Industries will not be bound by any other obligation or representation made in connection with the sale and/or purchase of this product.

PRODUCT LIFE

The maximum expected life of this product, other than wear out, is 20 years from the date of purchase. Watson Industries, Inc. recommends the replacement of any product that has exceeded the product life expectation.
Customer Service

All repairs, calibrations and upgrades are performed at the factory. Before returning any product, please contact Watson Industries to obtain a Returned Material Authorization number (RMA).

Return Address & Contact Information

Watson Industries, Inc.
3035 Melby Street
Eau Claire, WI 54703
ATTN: Service Department
Telephone: (715) 839-0628 Fax: (715) 839-8248 email: support@watson-gyro.com

Returning the Product

Product shall be packaged making sure there is adequate packing around all sides. Correspondence shall include:

- Customer’s Name and Address
- Contact Information
- Equipment Model Number
- Equipment Serial Number
- Description of Fault

It is the customer’s responsibility to pay all shipping charges from customer to Watson Industries, including import and transportation charges.
Appendix A
The following outputs are available via the RS-232 serial link. Their full-scale ranges are listed for decimal format.

<table>
<thead>
<tr>
<th>Inertial Output</th>
<th>Label</th>
<th>Decimal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>TM</td>
<td>000.1 to 999.9 s</td>
</tr>
<tr>
<td>Tilt Angle</td>
<td>TA</td>
<td>±89.9°</td>
</tr>
<tr>
<td>Pan Angle</td>
<td>PA</td>
<td>±179.9°</td>
</tr>
<tr>
<td>X Accelerometer</td>
<td>XA</td>
<td>±9.99 g</td>
</tr>
<tr>
<td>Y Accelerometer</td>
<td>YA</td>
<td>±9.99 g</td>
</tr>
<tr>
<td>Z Accelerometer</td>
<td>ZA</td>
<td>±9.99 g</td>
</tr>
<tr>
<td>Tilt Axis Angular Rate</td>
<td>TR</td>
<td>±99.9 °/s</td>
</tr>
<tr>
<td>Pan Axis Angular Rate</td>
<td>PR</td>
<td>±99.9 °/s</td>
</tr>
<tr>
<td>Power Supply Voltage</td>
<td>PS</td>
<td>00.0 to 35.0 VDC</td>
</tr>
<tr>
<td>Tilt Potentiometer</td>
<td>PT</td>
<td>±179.9°</td>
</tr>
<tr>
<td>Pan Potentiometer</td>
<td>PP</td>
<td>±179.9°</td>
</tr>
<tr>
<td>Tilt Current</td>
<td>TC</td>
<td>±9.99 Amps</td>
</tr>
<tr>
<td>Pan Current</td>
<td>PC</td>
<td>±9.99 Amps</td>
</tr>
<tr>
<td>Tilt Joystick Rate</td>
<td>TJ</td>
<td>±49.9 °/s</td>
</tr>
<tr>
<td>Pan Joystick Rate</td>
<td>PJ</td>
<td>±49.9 °/s</td>
</tr>
<tr>
<td>Temperature</td>
<td>TP</td>
<td>-40º to 88ºC</td>
</tr>
<tr>
<td>Status Bits</td>
<td>ST</td>
<td>3 ASCII chars representing Octal digits</td>
</tr>
<tr>
<td>Flag Bits 1</td>
<td>F1</td>
<td>2 ASCII chars representing Octal digits</td>
</tr>
<tr>
<td>Flag Bits 2</td>
<td>F2</td>
<td>3 ASCII chars representing Octal digits</td>
</tr>
</tbody>
</table>

Status Bits:

The status bits provide operational information that is presented as two ASCII octal digits. The first digit is made up of one bit as follows:

<table>
<thead>
<tr>
<th>First Digit</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Position</td>
</tr>
<tr>
<td>0</td>
<td>Inertial</td>
</tr>
</tbody>
</table>

The Second digit is made from three bits as follows:

1) Initialization mode equals a value of 1 during start up.
2) Tilt Error Flag equals 1 when Tilt angle is in error
3) Pan Error Flag equals 1 when Pan Angle is in error

<table>
<thead>
<tr>
<th>Second Digit</th>
<th>Pan Error</th>
<th>Tilt Error</th>
<th>Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes 4 + 2 + 1</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>Yes</td>
<td>No 4 + 2</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>Yes 4 + 1</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>No 4</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Yes</td>
<td>Yes 2 + 1</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>No 2</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Yes 1</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
The Third digit represents the current time constant as a power of two:

\[TC = 2^X \text{ Seconds} \]

The nominal time constant is 64 seconds which would display the octal value of X as “6”.

<table>
<thead>
<tr>
<th>Third Digit</th>
<th>Time Constant (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Flag Bits 1:

The flag bits present warning information. The first digit is made from three bits:

1) Pan angle negative stop limit equals a value of 1 when the Pan potentiometer reaches a preset limit.
2) Pan angle positive stop limit equals a value of 2 when the Pan potentiometer reaches a preset limit.
3) Pan axis active bit equals a value of 4 when the Pan axis is active.

<table>
<thead>
<tr>
<th>First Digit</th>
<th>Pan Axis Active</th>
<th>Pan Angle Positive Stop Limit</th>
<th>Pan Angle Negative Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

“4” Pan Axis Active
“2” Pan Positive Stop Limit
“1” Pan Negative Stop Limit

The second digit is made from three bits as follows:

1) Tilt angle negative stop limit equals a value of 1 when the Tilt potentiometer reaches a preset limit.
2) Tilt angle positive stop limit equals a value of 2 when the Tilt potentiometer reaches a preset limit.
3) Tilt Axis active bit equals a value of 4 when the Tilt axis is active.

<table>
<thead>
<tr>
<th>First Digit</th>
<th>Tilt Axis Active</th>
<th>Tilt Angle Positive Stop Limit</th>
<th>Tilt Angle Negative Stop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

“4” Tilt Axis Active
“2” Tilt Positive Stop Limit
“1” Tilt Negative Stop Limit
Flag Bits 2:

The flag bits present warning information. Flag Bits 2 is made from three digits as follows:

The first digit is made from two bits as follows:

1) Input Power greater than 30 Volts equals a value of 2.
2) Input Power less than 18 Volts equals a value of 1.

<table>
<thead>
<tr>
<th>First Digit</th>
<th>Input Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Greater than 30 VDC (Over voltage)</td>
</tr>
<tr>
<td>1</td>
<td>Less than 18 VDC (Under voltage)</td>
</tr>
<tr>
<td>0</td>
<td>Between 18 & 30 VDC (Acceptable)</td>
</tr>
</tbody>
</table>

The second digit is made from two bits as follows:

1) Tilt over current limit equals a value of 2 when the Tilt motor is overloaded.
2) Pan over current limit equals a value of 1 when the Pan motor is overloaded.

<table>
<thead>
<tr>
<th>Second Digit</th>
<th>Tilt Motor Overload</th>
<th>Pan Motor Overload</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>2 + 1</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

The third digit is made from two bits as follows:

1) Tilt Rate limit equals a value of 2 when the Tilt axis angular rate exceeds 25 degrees per second.
2) Pan Rate limit equals a value of 1 when the Pan axis angular rate exceeds 25 degrees per second.

<table>
<thead>
<tr>
<th>Third Digit</th>
<th>Tilt Axis Rate Limit Exceeded</th>
<th>Pan Axis Rate Limit Exceeded</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>2 + 1</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Activating Command Mode (Double Spacebar Mode)

1) Connect the unit to a DC power source that is off.
2) The viewing computer needs a valid bi-directional RS-232 serial port. Connect the serial port of the Watson sensor to the computer’s serial port.
3) Open a terminal program (such as HyperTerminal) to interface with the unit. The default baud rate of the unit is 9600 baud. Make sure the computer’s serial port is open.
4) Power-on the unit. A startup message will be transmitted by the unit and will appear in the terminal window unless it has been suppressed (See RS-232 Input Commands above).
5) During initialization, hit the space bar twice within close succession.

 Note: The sensor initialization time begins after the startup message is transmitted. Typically, this time period lasts 5 seconds, but could be as long as 127 seconds depending on your sensor.

6) Wait until after initialization is finished. At this point, command mode will be activated and the unit will accept keyboard commands.

 Note: Most Watson sensors have initialization times that are shorter than 30 sec. Any extra keystrokes (other than two spacebars) sent during initialization will deactivate command mode.

It can often take a few attempts to get the hang of step 5. Repeat steps 4-6 until successful.

Determining Output Channels

1) Activate Command Mode (See above).
2) To determine which channels are present, first type ' &'.

 This will bring up the main menu:

<table>
<thead>
<tr>
<th>TYPE IN THE NUMBER OF YOUR SELECTION (OR 'Q' TO QUIT):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = ADJUST TIME CONSTANT</td>
</tr>
<tr>
<td>2 = SET JOYSTICK/AXIS PARAMETERS</td>
</tr>
<tr>
<td>3 = SET OUTPUT CHANNELS</td>
</tr>
<tr>
<td>4 = LIST CURRENT OUTPUT CHANNEL SELECTION</td>
</tr>
<tr>
<td>5 = SET NEW BAUD RATE</td>
</tr>
</tbody>
</table>

3) Typing in ' 4 ' will show which channels are currently active.
Setting Output Channels

1) Activate Command Mode (See above).
2) To change which channels are output type '&'(this will bring up the main menu again)
3) Type ‘3’ to set up the channels.
 The following message will appear:

 TO SET FOR OUTPUT FOR ANY OF THE FOLLOWING DATA ITEMS, PRESS Y
 TO AVOID ANY OF THE FOLLOWING DATA ITEMS, PRESS N
 TO QUIT AND DISREGARD ANY OTHER DATA, PRESS Q

 *** DO YOU WANT TO PROCEED? (Y/N/Q)

4) To proceed type 'Y'
 Stop this process by typing either ‘N’ or ‘Q’.
 If ‘Y’ is pressed, each channel will come up one at a time
 For example:

 DO YOU WANT OUTPUT OF TIME SINCE RESET? N
 DO YOU WANT OUTPUT OF TILT ANGLE? Y
 DO YOU WANT OUTPUT OF PAN ANGLE?

5) Type 'Y' to output the channel, type 'N' to remove the channel.
 After the last data channel is listed, this message will appear:

 Y = GOBACK, N = INSTALL DATA & QUIT, Q = QUIT
 DO YOU WANT TO TRY TO SET DATA AGAIN?

6) To accept the new channels, type 'N'. Typing a ‘Y’ will start the command menu sequence over.
 Typing a ‘Q’ at any time in the sequence will quit without updating the channels.
 Changes made will not change the non-volatile settings. To make these new settings the default
 value, send a Quotation Mark (").

7) Press the space bar after quitting or updating the new channels to restart the data flow.

Adjust Time Constant

1) Activate Command Mode (See above).
2) Type '&'(this will bring up the main menu again).
3) Type ‘1’ to show the current time constants.

 The Nominal Time Constant is set at the factory to a value of 64 seconds. This is the main
 setting.

 Consult the factory for recommendations before adjusting these values.
4) Press the spacebar after changing the time constant to resume data transmission.
Set Joystick Tilt Axis Parameters

Typing in ' &' will bring up the following menu.

```
TYPE IN THE NUMBER OF YOUR SELECTION (OR 'Q' TO QUIT):
 1 = ADJUST TIME CONSTANT
 2 = SET JOYSTICK/AXIS PARAMETERS
 3 = SET OUTPUT CHANNELS
 4 = LIST CURRENT OUTPUT CHANNEL SELECTION
 5 = SET NEW BAUD RATE
```

While in the Ampersand Menu, typing in ' 2 ' will bring up the following menu.

```
TYPE IN THE NUMBER OF YOUR SELECTION (OR 'Q' TO QUIT):
 1 = ADJUST TILT AXIS PARAMETERS
 2 = ADJUST PAN AXIS PARAMETERS
 3 = SET NEW HOME POSITION
```

To Adjust the Tilt Axis parameters, typing in ‘ 1 ’ will bring up the following menu.

```
TYPE IN THE NUMBER OF YOUR SELECTION (OR 'Q' TO QUIT):
 1 = REVERSE TILT JOYSTICK POLARITY
 2 = ADJUST TILT JOYSTICK FEEL
 3 = ADJUST TILT JOYSTICK SPEED
 4 = ADJUST TILT AXIS STABILITY
```

Typing in a ‘ 1 ’ will reverse the Joystick Tilt Axis polarity.

Typing in a ‘ 2 ’ will display the current Tilt Joystick Feel Factor

```
THE CURRENT TILT JOYSTICK FEEL FACTOR = 0.50
ENTER TILT JOYSTICK FEEL FACTOR (0.05 to 1.00) FOLLOWED BY <CR>(OR 'Q' TO QUIT):
```

Changing this parameter will change the Tilt joystick’s responsiveness.
Enter the Tilt Joystick Feel Factor with up to two decimal places.

Note: Input values outside the limit range are rejected (with ‘ENTRY EXCEEDS LIMITS - TRY AGAIN’ message) and the unit returns to the previous message

Typing in a ‘ 3 ’ will display the current Tilt Speed Factor

```
THE CURRENT TILT JOYSTICK SPEED FACTOR = 0.50
ENTER TILT JOYSTICK SPEED FACTOR (0.05 to 1.00) FOLLOWED BY <CR>(OR 'Q' TO QUIT):
```

Changing this parameter will change the Tilt joystick’s sensitivity.
Enter the Tilt Joystick Speed Factor with up to two decimal places.

Note: Input values outside the limit range are rejected (with ‘ENTRY EXCEEDS LIMITS - TRY AGAIN’ message) and the unit returns to the previous message
Typing in a ‘4’ will display the current Tilt Axis Stability Factor

<table>
<thead>
<tr>
<th>THE CURRENT TILT AXIS STABILITY FACTOR = 0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER TILT AXIS STABILITY FACTOR (0.05 to 1.00) FOLLOWED BY <CR>(OR ‘Q’ TO QUIT):</td>
</tr>
</tbody>
</table>

Changing this parameter will change the Tilt Axis Stability or responsiveness. Please contact Factory before changing this as it could make the Servo System unstable
Enter the Tilt Joystick Speed Factor with up to two decimal places.

Note: Input values outside the limit range are rejected (with ‘ENTRY EXCEEDS LIMITS - TRY AGAIN’ message) and the unit returns to the previous message

Set Joystick Pan Axis Parameters

Typing in ‘&’ will bring up the following menu.

<table>
<thead>
<tr>
<th>TYPE IN THE NUMBER OF YOUR SELECTION (OR ‘Q’ TO QUIT):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = ADJUST TIME CONSTANT</td>
</tr>
<tr>
<td>2 = SET JOYSTICK/AXIS PARAMETERS</td>
</tr>
<tr>
<td>3 = SET OUTPUT CHANNELS</td>
</tr>
<tr>
<td>4 = LIST CURRENT OUTPUT CHANNEL SELECTION</td>
</tr>
<tr>
<td>5 = SET NEW BAUD RATE</td>
</tr>
</tbody>
</table>

While in the Ampersand Menu, typing in ‘2’ will bring up the following menu.

<table>
<thead>
<tr>
<th>TYPE IN THE NUMBER OF YOUR SELECTION (OR ‘Q’ TO QUIT):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = ADJUST TILT AXIS PARAMETERS</td>
</tr>
<tr>
<td>2 = ADJUST PAN AXIS PARAMETERS</td>
</tr>
<tr>
<td>3 = SET NEW HOME POSITION</td>
</tr>
</tbody>
</table>

To Adjust the Pan Axis parameters, typing in ‘2’ will bring up the following menu.

<table>
<thead>
<tr>
<th>TYPE IN THE NUMBER OF YOUR SELECTION (OR ‘Q’ TO QUIT):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = REVERSE PAN JOYSTICK POLARITY</td>
</tr>
<tr>
<td>2 = ADJUST PAN JOYSTICK FEEL</td>
</tr>
<tr>
<td>3 = ADJUST PAN JOYSTICK SPEED</td>
</tr>
<tr>
<td>4 = ADJUST PAN AXIS STABILITY</td>
</tr>
</tbody>
</table>

Typing in a ‘1’ will reverse the Joystick Pan Axis polarity.
Typing in a ‘2’ will display the current Pan Joystick Feel Factor

<table>
<thead>
<tr>
<th>THE CURRENT PAN JOYSTICK FEEL FACTOR = 0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER PAN JOYSTICK FEEL FACTOR (0.05 to 1.00) FOLLOWED BY <CR>(OR ‘Q’ TO QUIT):</td>
</tr>
</tbody>
</table>

Changing this parameter will change the Pan joystick’s responsiveness.
Enter the Pan Joystick Feel Factor with up to two decimal places.

Note: Input values outside the limit range are rejected (with ‘ENTRY EXCEEDS LIMITS - TRY AGAIN’ message) and the unit returns to the previous message.
Typing in a ‘3’ will display the current Pan Joystick Speed Factor

```
THE CURRENT PAN JOYSTICK SPEED FACTOR = 0.50
ENTER PAN JOYSTICK SPEED FACTOR (0.05 to 1.00) FOLLOWED BY <CR>(OR 'Q' TO QUIT):
```

Changing this parameter will change the Pan joystick’s sensitivity. Enter the Pan Joystick Speed Factor with up to two decimal places.

Note: Input values outside the limit range are rejected (with ‘ENTRY EXCEEDS LIMITS - TRY AGAIN’ message) and the unit returns to the previous message.

Typing in a ‘4’ will display the current Pan Axis Stability Factor

```
THE CURRENT PAN AXIS STABILITY FACTOR = 0.50
ENTER PAN AXIS STABILITY FACTOR (0.05 to 1.00) FOLLOWED BY <CR>(OR 'Q' TO QUIT):
```

Changing this parameter will change the Pan Axis Stability or responsiveness. Please contact Factory before changing this as it could make the Servo System unstable. Enter the Pan Joystick Speed Factor with up to two decimal places.

Note: Input values outside the limit range are rejected (with ‘ENTRY EXCEEDS LIMITS - TRY AGAIN’ message) and the unit returns to the previous message.

Set New Home Position

Typing in ‘&’ will bring up the following menu.

```
TYPE IN THE NUMBER OF YOUR SELECTION (OR 'Q' TO QUIT):
  1 = ADJUST TIME CONSTANT
  2 = SET JOYSTICK/AXIS PARAMETERS
  3 = SET OUTPUT CHANNELS
  4 = LIST CURRENT OUTPUT CHANNEL SELECTION
  5 = SET NEW BAUD RATE
```

To update the Home Position, typing in ‘2’ will bring up the following menu.

```
TYPE IN THE NUMBER OF YOUR SELECTION (OR 'Q' TO QUIT):
  1 = ADJUST TILT AXIS PARAMETERS
  2 = ADJUST PAN AXIS PARAMETERS
  3 = SET NEW HOME POSITION
```

Typing in a ‘3’ will update the Home position to current Servo System Orientation.
Set Baud Rate

1) Activate Command Mode (See above).
2) Type '&'(this will bring up the main menu again).
3) Typing in '5' will allow the user to change the baud rate.
4) Change the baud rate to a new setting.

 To change to 38,400 Baud, type ‘1’.
 To change to 19,200 Baud, type ‘2’.
 To change to 9,600 Baud, type ‘3’.
 To change to 4,800 Baud, type ‘4’.

The baud rate change will take effect immediately. To make the new baud rate the default setting, send a quote symbol (“) using the new baud rate. Otherwise the old baud rate will return the next time the unit is powered up.

Note: The baud rate of the software that is communicating to the sensor will need to be changed to match the new setting.

5) Press the space bar to resume data transmission.
The factory settings for serial communications are 9.6K baud with 8 bits and one stop bit, no parity.